The inactivation domain of STIM1 is functionally coupled with the Orai1 pore to enable Ca2+-dependent inactivation
نویسندگان
چکیده
The inactivation domain of STIM1 (ID(STIM): amino acids 470-491) has been described as necessary for Ca(2+)-dependent inactivation (CDI) of Ca(2+) release-activated Ca(2+) (CRAC) channels, but its mechanism of action is unknown. Here we identify acidic residues within IDSTIM that control the extent of CDI and examine functional interactions of ID(STIM) with Orai1 pore residues W76 and Y80. Alanine scanning revealed three IDSTIM residues (D476/D478/D479) that are critical for generating full CDI. Disabling ID(STIM) by a triple alanine substitution for these three residues ("STIM1 3A") or by truncation of the entire domain (STIM1(1-469)) reduced CDI to the same residual level observed for the Orai1 pore mutant W76A (approximately one third of the extent seen with full-length STIM1). Results of noise analysis showed that STIM11-469 and Orai1 W76A mutants do not reduce channel open probability or unitary Ca(2+) conductance, factors that determine local Ca(2+) accumulation, suggesting that they diminish CDI instead by inhibiting the CDI gating mechanism. We tested for functional coupling between ID(STIM) and the Orai1 pore by double-mutant cycle analysis. The effects on CDI of mutations disabling ID(STIM) or W76 were not additive, demonstrating that ID(STIM) and W76 are strongly coupled and act in concert to generate full-strength CDI. Interestingly, disabling ID(STIM) and W76 separately gave opposite results in Orai1 Y80A channels: channels with W76 but lacking ID(STIM) generated approximately two thirds of the WT extent of CDI but those with ID(STIM) but lacking W76 completely failed to inactivate. Together, our results suggest that Y80 alone is sufficient to generate residual CDI, but acts as a barrier to full CDI. Although ID(STIM) is not required as a Ca(2+) sensor for CDI, it acts in concert with W76 to progress beyond the residual inactivated state and enable CRAC channels to reach the full extent of inactivation.
منابع مشابه
STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels.
Ca(2+)-dependent inactivation (CDI) is a key regulator and hallmark of the Ca(2+) release-activated Ca(2+) (CRAC) channel, a prototypic store-operated Ca(2+) channel. Although the roles of the endoplasmic reticulum Ca(2+) sensor STIM1 and the channel subunit Orai1 in CRAC channel activation are becoming well understood, the molecular basis of CDI remains unclear. Recently, we defined a minimal ...
متن کاملMolecular determinants of fast Ca2+-dependent inactivation and gating of the Orai channels.
Ca(2+) influx by store-operated Ca(2+) influx channels (SOCs) mediates many cellular functions regulated by Ca(2+), and excessive SOC-mediated Ca(2+) influx is cytotoxic and associated with disease. One form of SOC is the CRAC current that is mediated by Orai channels activated by STIM1. A fundamental property of the native CRAC and of the Orais is fast Ca(2+)-dependent inactivation, which limi...
متن کاملThe STIM1 CTID domain determines access of SARAF to SOAR to regulate Orai1 channel function
Ca(2+) influx by store-operated Ca(2+) channels (SOCs) mediates all Ca(2+)-dependent cell functions, but excess Ca(2+) influx is highly toxic. The molecular components of SOC are the pore-forming Orai1 channel and the endoplasmic reticulum Ca(2+) sensor STIM1. Slow Ca(2+)-dependent inactivation (SCDI) of Orai1 guards against cell damage, but its molecular mechanism is unknown. Here, we used hom...
متن کاملStore-dependent and -independent modes regulating Ca2+ release-activated Ca2+ channel activity of human Orai1 and Orai3.
We evaluated currents induced by expression of human homologs of Orai together with STIM1 in human embryonic kidney cells. When co-expressed with STIM1, Orai1 induced a large inwardly rectifying Ca(2+)-selective current with Ca(2+)-induced slow inactivation. A point mutation of Orai1 (E106D) altered the ion selectivity of the induced Ca(2+) release-activated Ca(2+) (CRAC)-like current while ret...
متن کاملSTIM1 triggers a gating rearrangement at the extracellular mouth of the ORAI1 channel
The ER-resident regulatory protein STIM1 triggers store-operated Ca(2+) entry by direct interaction with the plasma membrane Ca(2+) channel ORAI1. The mechanism of channel gating remains undefined. Here we establish that STIM1 gates the purified recombinant ORAI1 channel in vitro, and use Tb(3+) luminescence and, separately, disulfide crosslinking to probe movements of the pore-lining helices. ...
متن کامل